If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+22.0077x+119.99=0
a = 1; b = 22.0077; c = +119.99;
Δ = b2-4ac
Δ = 22.00772-4·1·119.99
Δ = 4.37885929
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22.0077)-\sqrt{4.37885929}}{2*1}=\frac{-22.0077-\sqrt{4.37885929}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22.0077)+\sqrt{4.37885929}}{2*1}=\frac{-22.0077+\sqrt{4.37885929}}{2} $
| j/5+14=20 | | 2(2x+5)-3=4x+7 | | -3x+6x=-3-9 | | 1/2x^2+1/4x-1/6=0 | | 37=2+7c | | x-10+x-20+21+42+29+x+14+x=360 | | 4z-38=50 | | 9x^2+22.0077x=8x^2−119.99 | | 5d+21=86 | | -2+(2/3)x=8 | | 2(x-12)^2-7=2x^2-12x+7 | | k/7+54=60 | | 4(g-74)=64 | | y-62/5=4 | | 9x2+22.0077x=8x2−119.99 | | 5x2+43x+24=0 | | 9x2+22.0077x=8x2−119.99. | | (6+4)+4+6(-8)=x | | 24=z/2+17 | | z/6+44=54 | | p/4-1=4 | | 5(u+3)=85 | | 53=f/9+49 | | 3(j-78)=12 | | 4(g–74)=64 | | 53=f/949 | | 11+2k=19 | | -6/5x=-1 | | 4x+2/5=3x+5/2 | | -3h+12=-69 | | 2x+2=-3x+47 | | x^{3}-64x=5x²-320 |